These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Scintillation proximity assay of inositol phosphates in cell extracts: high-throughput measurement of G-protein-coupled receptor activation. Author: Brandish PE, Hill LA, Zheng W, Scolnick EM. Journal: Anal Biochem; 2003 Feb 15; 313(2):311-8. PubMed ID: 12605869. Abstract: The phosphatidylinositol turnover assay is used widely to measure activation, and inhibition, of G(q)-linked G-protein-coupled receptors. Cells expressing the receptor of interest are labeled by feeding with tritiated myo-inositol. The label is incorporated into cellular phosphatidylinositol 4,5-bisphosphate, which, upon agonist binding to the receptor, is hydrolyzed by phospholipase C to inositol 1,4,5-trisphosphate (IP(3)) and diacylglycerol. In the presence of Li(+), dephosphorylation of IP(3) to inositol is blocked, and the mass of soluble inositol phosphates is a quantitative readout of receptor activation. Current protocols for this assay all involve an anion-exchange chromatography step to separate radiolabeled inositol phosphates from radiolabeled inositol, making the assay cumbersome and difficult to automate. We now describe a scintillation proximity assay to measure soluble inositol phosphate mass in cell extracts, thus obviating the need for the standard chromatography step. The method uses positively charged yttrium silicate beads that bind inositol phosphates, but not inositol. We have used this assay to measure activation of recombinant and endogenous muscarinic acetylcholine receptors and activation of recombinant neuropeptide FF2 receptor coupled to IP(3) production by coexpression of a chimeric G protein. Further, we demonstrate the use and functional validity of this assay in a semiautomated, 384-well format, by characterizing the muscarinic receptor antagonists pirenzepine and atropine.[Abstract] [Full Text] [Related] [New Search]