These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Molecular dissection of GTP exchange and hydrolysis within the ternary complex of tubulin heterodimers and Op18/stathmin family members.
    Author: Brännström K, Segerman B, Gullberg M.
    Journal: J Biol Chem; 2003 May 09; 278(19):16651-7. PubMed ID: 12606544.
    Abstract:
    The ubiquitous Op18 and the neural RB3 and SCG10 proteins are members of the oncoprotein18/stathmin family of microtubule regulators. These proteins bind two tubulin heterodimers via two imperfect helical repeats to form a complex of heterodimers aligned head-to-tail. Here we have analyzed GTP exchange and GTP hydrolysis at the exchangeable GTP-binding site (E-site) of tubulin heterodimers in complex with Op18, RB3, or SCG10. These proteins stimulate a low and indistinguishable rate of GTP hydrolysis, and our results show that GTP exchange is blocked at both E-sites of the ternary complex, whereas GTP hydrolysis only occurs at one of the two E-sites. Results from mutational analysis of clusters of hydrophobic residues within the first helical repeat of Op18 suggest that GTP is hydrolyzed at the E-site that is interfaced between the head-to-tail arranged heterodimers, which is consistent with predicted GTPase productive interactions between the two tubulin heterodimers. Our mutational analysis has also indicated that Op18/stathmin family members actively restrain the otherwise potent GTPase productive interactions that are generated by longitudinal interactions within protofilaments. We conclude that tubulin heterodimers in complex with Op18/stathmin family members are subject to allosteric effects that prevent futile cycles of GTP hydrolysis.
    [Abstract] [Full Text] [Related] [New Search]