These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The role of several kinases in mice tolerant to delta 9-tetrahydrocannabinol. Author: Lee MC, Smith FL, Stevens DL, Welch SP. Journal: J Pharmacol Exp Ther; 2003 May; 305(2):593-9. PubMed ID: 12606657. Abstract: It has been suggested that the cannabinoid receptor type 1 (CB1), a G protein-coupled receptor, is internalized after agonist binding and activation of the second messenger pathways. It is proposed that phosphorylation enhances the down-regulation of the CB1 receptor, thus contributing to tolerance. Alterations in phosphorylation of proteins in the signal transduction cascade after CB1receptor activation could also alter tolerance to cannabinoids. We addressed our hypothesis by evaluating the role of several kinases in antinociceptive tolerance to Delta(9)-tetrahydrocannabinol (THC). We evaluated cAMP-dependent protein kinase (PKA) using KT5720, a PKA inhibitor; protein kinase C (PKC) using bisindolylmaleimide I, HCl (bis), a PKC inhibitor; cGMP-dependent protein kinase (PKG) using KT5823, a PKG inhibitor; beta-adrenergic receptor kinase (beta-ARK) using low molecular weight heparin (LMWH), a beta-ARK inhibitor; and phosphatidylinositol-3 kinase (PI3-K) using 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002), a PI3-K inhibitor and PP1, a Src family tyrosine kinase inhibitor. The cAMP analog used was dibutyryl-cAMP and the cGMP analog used was dibutyryl-cGMP. Our data indicate that selective kinases may be involved in cannabinoid tolerance. Mice and rats were rendered tolerant to Delta(9)-THC. The PKG inhibitor KT5823, the beta-ARK inhibitor LMWH, the PI3-K inhibitor LY294002, and inhibition of PKC by bis had no effect on tolerance. At a higher dose, bis attenuated the antinociceptive effect of delta(9)-THC in nontolerant mice. PP1, the Src family tyrosine kinase inhibitor, and KT5720, the PKA inhibitor, reversed THC-induced tolerance. In addition, inhibition of PKA reversed a decrease in dynorphin release shown to accompany THC tolerance in rats. These data support a role for PKA and Src tyrosine kinase in phosphorylation events in delta(9)-THC-tolerant mice.[Abstract] [Full Text] [Related] [New Search]