These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: EPYLRFamide-mediated reduction of acetylcholine-induced inward currents in Helix lucorum-identified neurones: role of NAADP-dependent and IP3-dependent Ca2+ release from internal stores, calmodulin and Ca2+/calmodulin-dependent protein kinase II.
    Author: Pivovarov AS, Walker RJ.
    Journal: Regul Pept; 2003 Mar 28; 111(1-3):31-9. PubMed ID: 12609746.
    Abstract:
    The effect of seven compounds intracellularly applied by spontaneous diffusion were investigated on the EPYLRFamide-induced reduction of acetylcholine-induced inward current (ACh-current) recorded from identified neurones from Helix lucorum. Inward currents were recorded from neurones LPa2, LPa3, RPa3 and RPa2 in isolated ganglia preparations using two-electrode voltage clamp technique. ACh was applied ionophoretically. Heparin, an antagonist of IP(3) receptors (IP(3)Rs), and IP(3), the agonist of IP(3)Rs, decreased the effect of EPYLRFamide. Thio-NADP, a blocker of NAADP-induced Ca(2+) release, beta-NAADP, Ca(2+) releaser, R24571, W-7 (both calmodulin antagonists), and KN-62, a selective inhibitor of Ca(2+)/calmodulin-dependent protein kinase II, did not change the modulatory effect of EPYLRFamide. These data suggest that EPYLRFamide decreases ACh-current through elevation of the basal intracellular level of the putative endogenous agonist of IP(3)Rs which activates release of Ca(2+) from intracellular stores. It is concluded that intracellular free Ca(2+) acts on ACh receptor/ionic channel without activation of calmodulin and Ca(2+)/calmodulin-dependent protein kinase II.
    [Abstract] [Full Text] [Related] [New Search]