These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A two [4Fe-4S]-cluster-containing ferredoxin as an alternative electron donor for 2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans.
    Author: Thamer W, Cirpus I, Hans M, Pierik AJ, Selmer T, Bill E, Linder D, Buckel W.
    Journal: Arch Microbiol; 2003 Mar; 179(3):197-204. PubMed ID: 12610725.
    Abstract:
    The key step in the fermentation of glutamate by Acidaminococcus fermentans is a reversible syn-elimination of water from ( R)-2-hydroxyglutaryl-CoA to ( E)-glutaconyl-CoA catalyzed by 2-hydroxyglutaryl-CoA dehydratase, a two-component enzyme system. The actual dehydration is mediated by component D, which contains 1.0 [4Fe-4S](2+) cluster, 1.0 reduced riboflavin-5'-phosphate and about 0.1 molybdenum (VI) per heterodimer. The enzyme has to be activated by the extremely oxygen-sensitive [4Fe-4S](1+/2+)-cluster-containing homodimeric component A, which generates Mo(V) by an ATP/Mg(2+)-induced one-electron transfer. Previous experiments established that the hydroquinone state of a flavodoxin (m=14.6 kDa) isolated from A. fermentans served as one-electron donor of component A, whereby the blue semiquinone is formed. Here we describe the isolation and characterization of an alternative electron donor from the same organism, a two [4Fe-4S](1+/2+)-cluster-containing ferredoxin (m=5.6 kDa) closely related to that from Clostridium acidiurici. The protein was purified to homogeneity and almost completely sequenced; the magnetically interacting [4Fe-4S] clusters were characterized by EPR and Mössbauer spectroscopy. The redox potentials of the ferredoxin were determined as -405 mV and -340 mV. Growth experiments with A. fermentans in the presence of different iron concentrations in the medium (7-45 microM) showed that flavodoxin is the dominant electron donor protein under iron-limiting conditions. Its concentration continuously decreased from 3.5 micromol/g protein at 7 microM Fe to 0.02 micromol/g at 45 microM Fe. In contrast, the concentration of ferredoxin increased stepwise from about 0.2 micromol/g at 7-13 microM Fe to 1.1+/-0.1 micromol/g at 17-45 microM Fe.
    [Abstract] [Full Text] [Related] [New Search]