These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Photothermally induced Bergman cyclization of metalloenediynes via near-infrared ligand-to-metal charge-transfer excitation. Author: Kraft BJ, Coalter NL, Nath M, Clark AE, Siedle AR, Huffman JC, Zaleski JM. Journal: Inorg Chem; 2003 Mar 10; 42(5):1663-72. PubMed ID: 12611537. Abstract: Reaction of 1,2-bis(tert-butyldimethylsilyloxy)-4,5-diiodobenzene with 2 equiv of phenylacetylene followed by deprotection with KF/HBr yields the catechol-enediyne ligand 4,5-bis(phenylethynyl)benzene-1,2-diol (CatED, 1). Metathesis of VO(SALIMH)ACAC.CH(3)OH (2) with 1 and subsequent air oxidation yields (4,5-bis(phenylethynyl)-1,2-dihydroxyphenyl)[4-(2-(salicylideneamino)ethyl)imidazolyl]oxovanadium(V).CH(3)OH [VO(SALIMH)CatED], (3), in 85%. The thermal Bergman cyclization temperature for 3 is very high (246 degrees C), which is expected for a rigid, benzannulated enediyne motif. The electronic spectrum of 3 exhibits two strong ligand-to-metal charge transfer (LMCT) transitions centered at 584 nm (epsilon = 6063 M(-)(1) cm(-)(1)) and 1028 nm (epsilon = 8098 M(-)(1) cm(-)(1)). These transitions derive from CatED-to-V(V) ligand-to-metal charge transfer, the assignment of which is verified by resonance enhancement of several CatED vibrational modes in the Raman spectra obtained with lambda = 785 vs lambda = 457.9 nm under low power and/or temperature conditions. At elevated temperatures (113-323 K) and powers (2-5 mW), excitation of 3 in the solid state with lambda = 785 nm leads to generation of a black, sparingly soluble, fluorescent product that exhibits weak vibrational features in the 580-600, 1200-1350, and 1450-1600 cm(-)(1) regions, indicative of V-O (CatED) and aromatic ring units. The C=C ring modes correspond well with the vibrational characteristics of poly(p-phenylene) and derivatives thereof. Additionally, materials generated in both the solid-state thermal and photothermal reactions of 3 demonstrate the formation of high molecular weight species ranging from 5000 to 274 000. On the basis of these data and the literature precedent for formation of poly(p-phenylene) via thermolysis of simple enediynes, the reaction poses a unique approach for photoinitiating Bergman cyclization with long-wavelength excitation, as well as the generation of polymeric products.[Abstract] [Full Text] [Related] [New Search]