These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Intracellular calcium measurements of single human skin cells after stimulation with corticotropin-releasing factor and urocortin using confocal laser scanning microscopy. Author: Wiesner B, Roloff B, Fechner K, Slominski A. Journal: J Cell Sci; 2003 Apr 01; 116(Pt 7):1261-8. PubMed ID: 12615968. Abstract: Using confocal laser scanning microscopy we investigated the Ca(2+) distribution in single corticotropin releasing factor- and urocortin-stimulated human skin cells. The models tested included melanoma cells, neonatal melanocytes and keratinocytes, and immortalized HaCaT keratinocytes. The changes in intracellular Ca(2+) signal intensities observed after stimulation of different cell types with corticotropin releasing factor and urocortin showed that: (1) the increase of intracellular Ca(2+) concentration was caused by a Ca(2+) influx (inhibition by EGTA); (2) this Ca(2+) influx took place through voltage-activated Ca(2+) ion channels (inhibition by d-cis-diltiazem, verapamil) and (3) cyclic nucleotide-gated ion channels were not involved in this process (no effect of Mg(2+)). The effects were also observed at very low peptide concentrations (10(-13) M) with no apparent linear correlation between peptide dosage and increase of fluorescence intensity, which implied co-expression of different corticotropin releasing factor receptor forms in the same cell. Immortalized (HaCaT) keratinocytes exhibited the strongest differential increases of a Ca(2+) fluorescence after peptide-stimulation. Corticotropin releasing factor induced Ca(2+) flux into the cytoplasm, while urocortin Ca(2+) flux into the nucleus with a remarkable oscillatory effect. The latter indicated the presence of an intracellular urocortin-induced signal transduction pathway that is unique to keratinocytes.[Abstract] [Full Text] [Related] [New Search]