These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mechanism of the E. coli tau processivity switch during lagging-strand synthesis.
    Author: Leu FP, Georgescu R, O'Donnell M.
    Journal: Mol Cell; 2003 Feb; 11(2):315-27. PubMed ID: 12620221.
    Abstract:
    The E. coli replication machinery employs a beta clamp that tethers the polymerase to DNA, thus ensuring high processivity. The replicase also contains a processivity switch that dissociates the polymerase from its beta clamp. The switch requires the tau subunit of the clamp loader and is regulated by different DNA structures. At a primed site, the switch is "off." When the replicase reaches the downstream primer to form a nick, the switch is flipped, and tau ejects the polymerase from beta. This switch has high fidelity for completed synthesis, remaining "off" until just prior to incorporation of the last nucleotide and turning "on" only after addition of the last dNTP. These actions of tau are confined to its C-terminal region, which is located outside the clamp loading apparatus. Thus, this highly processive replication machine has evolved a mechanism to specifically counteract processivity at a defined time in the lagging-strand cycle.
    [Abstract] [Full Text] [Related] [New Search]