These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: ADF/cofilin mediates actin cytoskeletal alterations in LLC-PK cells during ATP depletion.
    Author: Ashworth SL, Southgate EL, Sandoval RM, Meberg PJ, Bamburg JR, Molitoris BA.
    Journal: Am J Physiol Renal Physiol; 2003 Apr; 284(4):F852-62. PubMed ID: 12620926.
    Abstract:
    Ischemic injury induces actin cytoskeleton disruption and aggregation, but mechanisms affecting these changes remain unclear. To determine the role of actin-depolymerizing factor (ADF)/ cofilin participation in ischemic-induced actin cytoskeletal breakdown, we utilized porcine kidney cultured cells, LLC-PK(A4.8), and adenovirus containing wild-type (wt), constitutively active, and inactive Xenopus ADF/cofilin linked to green fluorescence protein [XAC(wt)-GFP] in an ATP depletion model. High adenoviral infectivity (70%) in LLC-PK(A4.8) cells resulted in linearly increasing XAC(wt)-GFP and phosphorylated (p)XAC(wt)-GFP (inactive) expression. ATP depletion rapidly induced dephosphorylation, and, therefore, activation, of endogenous pcofilin as well as pXAC(wt)-GFP in conjunction with the formation of fluorescent XAC(wt)-GFP/actin aggregates and rods. No significant actin cytoskeletal alterations occurred with short-term ATP depletion of LLC-PK(A4.8) cells expressing GFP or the constitutively inactive mutant XAC(S3E)-GFP, but cells expressing the constitutively active mutant demonstrated nearly instantaneous actin disruption with aggregate and rod formation. Confocal image three-dimensional volume reconstructions of normal and ATP-depleted LLC-PK(A4.8) cells demonstrated that 25 min of ATP depletion induced a rapid increase in XAC(wt)-GFP apical and basal signal in addition to XAC-GFP/actin aggregate formation. These data demonstrate XAC(wt)-GFP participates in ischemia-induced actin cytoskeletal alterations and determines the rate and extent of these ATP depletion-induced cellular alterations.
    [Abstract] [Full Text] [Related] [New Search]