These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Chemical changes in different types of coal ash during prolonged, large scale, contact with seawater.
    Author: Shoham-Frider E, Shelef G, Kress N.
    Journal: Waste Manag; 2003; 23(2):125-34. PubMed ID: 12623087.
    Abstract:
    In this study, we followed the chemical changes occurring in coal ash exposed to prolonged (300 days), large scale, contact with running seawater. Four major components (Al, Ca, Mg, Fe) and seven minor and trace elements (Cd, Cr, Cu, Mn, Zn, Pb, Hg) were measured in four coal ash types: fly and bottom ash freshly obtained from coal-fired power plant, and old ash (crushed and blocks) recovered from the sea after 3-5 years contact with seawater. Changes occurred in the chemical composition of the coal ash along the experiment: Fe increased in fresh ash, Al increased in old ash and Ca increased in all ash types except old ash blocks. Cu and Hg decreased in fresh fly ash while Cr increased, Cd decreased in all ash types except bottom ash, and Mn decreased in bottom ash. Most of the changes occurred in the fresh fly ash, and not in the old ash, indicating equilibrium after prior exposure to seawater. In addition, more changes occurred in fresh fly ash than in bottom ash, emphasizing the differences between the two ash types. While the changes in the concentrations of the major elements may be an indication of the integrity of the ash matrix, the only elements of environmental significance released to the environment were Hg and Cd. However, calculated seawater concentrations were much lower than seawater quality criteria and therefore the coal ash was considered suitable for marine applications concerning seawater quality.
    [Abstract] [Full Text] [Related] [New Search]