These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The secretion of collagen by insects: uptake of [3H]proline by collagen-synthesizing cells in Locusta migratoria and Galleria mellonella.
    Author: Ashhurst DE, Costin NM.
    Journal: J Cell Sci; 1976 Mar; 20(2):377-403. PubMed ID: 1262412.
    Abstract:
    The uptake of [H3]proline by collagen-secreting cells of the locust, Locusta migratoria, and wax-moth, Galleria mellonella, has been investigated by electron autoradiography. The locust cells are around the ejaculatory duct and they secrete collagen in the young adult male, while the wax-moth cells are those which produce the dorsal mass of connective tissue on the abdominal nerve cord during the late pupal stage. The cells were exposed to [H3]proline either by injection of the [3H]proline into the insect, or as a pulse while the tissue was maintained in a culture medium. The tissues were fixed at differeing experimental times after exposure to the [3H]proline. The resulting electron autoradiographs were subjected to quantitative analysis, and the silver grain distribution was determined as the relative number of grains per unit area over a series of tissue compartments. When the results of this analysis for the matrix, rough endoplasmic reticulum and Golgi complexes of the two tissues were plotted against experimental time, it was seen that the relative number of grains per unit area over the rough endoplasmic reticulum decreases while that over the matrix increases; statistical analysis has shown that these changes are significant. For the Golgi complexes, however, the theoretical variances are much greater, due to the small relative area occupied by this organelle. There is little evidence for anything other than random sampling fluctuations in the relative numbers of grains per unit area, and hence it is unlikely that the time course of the label over the Golgi complexes follows that over the rough endoplasmic reticulum. The conclusions drawn from these experiments are firstly that a large portion of the labelled protein passes straight from the rough endoplasmic reticulum to the matrix, but that a smaller portion of the labelled material might pass from the rough endoplasmic reticulum to the Golgi complexes and thence to the matrix. It is assumed that collagen comprises most of the protein which passes straight from the rough endoplasmic reticulum to the matrix, and while there is no evidence to exclude collagen from the material passing through the Golgi complexes, it is probable that other proteins and glycosaminoglycans are also present in this labelled material. These conclusions about the intracellular pathway for collagen secretion are similar to those derived from recent studies of some vertebrate fibroblasts. There is, however, conflicting opinion about the intracellular pathway of collagen and it is pointed out that there is diversity in collagen-synthesizing cells, which may account for the differences in the intracellular pathways for collagen secretion which have been proposed.
    [Abstract] [Full Text] [Related] [New Search]