These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Lipase-catalyzed biodegradation of poly(epsilon-caprolactone) blended with various polylactide-based polymers.
    Author: Li S, Liu L, Garreau H, Vert M.
    Journal: Biomacromolecules; 2003; 4(2):372-7. PubMed ID: 12625734.
    Abstract:
    Poly(epsilon-caprolactone) was blended with various polylactide-based polymers and processed to films by the solution casting method. Blends of 25/75, 50/50, 75/25, 90/10, and 95/5 (w/w) poly(epsilon-caprolactone)/poly(l-lactide), a 95/5 (w/w) blend of poly(epsilon-caprolactone) with a poly(d-lactide), a 50/50 (w/w) poly(l-lactide)-poly(d-lactide) mixture, and a poly(l-lactide-co-epsilon-caprolactone) copolymer were considered comparatively. The various phase-separated films were allowed to degrade in the presence of Pseudomonas lipase, biodegradation being monitored by proton nuclear magnetic resonance, size exclusion chromatography, differential scanning calorimetry, X-ray diffraction, and environmental scanning electron microscopy. The formation of separated phases during solvent evaporation and their morphologies are discussed. The introduction of poly(l-lactide) dramatically decreased the degradation rate of poly(epsilon-caprolactone)/poly(l-lactide) blends. The higher the percentage of poly(l-lactide), the slower the degradation, while the presence of cracks and increasing the lipase concentration acted in favor of the enzymatic degradation. Long-term enzymatic degradation of the various 95/5 blends was investigated over 480 h. The poly(epsilon-caprolactone) phase was enzymatically degraded by the lipase regardless of the blend type, the degradation rate depending on the nature of the co-components.
    [Abstract] [Full Text] [Related] [New Search]