These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Coronary smooth muscle reactivity to muscarinic stimulation after ischemia-reperfusion in porcine myocardial infarction. Author: Rodríguez-Sinovas A, Bis J, Anivarro I, de la Torre J, Bayés-Genís A, Cinca J. Journal: J Appl Physiol (1985); 2003 Jul; 95(1):81-8. PubMed ID: 12626485. Abstract: This study tested whether ischemia-reperfusion alters coronary smooth muscle reactivity to vasoconstrictor stimuli such as those elicited by an adventitial stimulation with methacholine. In vitro studies were performed to assess the reactivity of endothelium-denuded infarct-related coronary arteries to methacholine (n = 18). In addition, the vasoconstrictor effects of adventitial application of methacholine to left anterior descending (LAD) coronary artery was assessed in vivo in pigs submitted to 2 h of LAD occlusion followed by reperfusion (n = 12), LAD deendothelization (n = 11), or a sham operation (n = 6). Endothelial-dependent vasodilator capacity of infarct-related LAD was assessed by intracoronary injection of bradykinin (n = 13). In vitro, smooth muscle reactivity to methacholine was unaffected by ischemia-reperfusion. In vivo, baseline methacholine administration induced a transient and reversible drop in coronary blood flow (9.6 +/- 4.6 to 1.9 +/- 2.6 ml/min, P < 0.01), accompanied by severe left ventricular dysfunction. After ischemia-reperfusion, methacholine induced a prolonged and severe coronary blood flow drop (9.7 +/- 7.0 to 3.4 +/- 3.9 ml/min), with a significant delay in recovery (P < 0.001). Endothelial denudation mimics in part the effects of methacholine after ischemia-reperfusion, and intracoronary bradykinin confirmed the existence of endothelial dysfunction. Infarct-related epicardial coronary artery shows a delayed recovery after vasoconstrictor stimuli, because of appropriate smooth muscle reactivity and impairment of endothelial-dependent vasodilator capacity.[Abstract] [Full Text] [Related] [New Search]