These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Taurolithocholic acid exerts cholestatic effects via phosphatidylinositol 3-kinase-dependent mechanisms in perfused rat livers and rat hepatocyte couplets. Author: Beuers U, Denk GU, Soroka CJ, Wimmer R, Rust C, Paumgartner G, Boyer JL. Journal: J Biol Chem; 2003 May 16; 278(20):17810-8. PubMed ID: 12626520. Abstract: Taurolithocholic acid (TLCA) is a potent cholestatic agent. Our recent work suggested that TLCA impairs hepatobiliary exocytosis, insertion of transport proteins into apical hepatocyte membranes, and bile flow by protein kinase Cepsilon (PKCepsilon)-dependent mechanisms. Products of phosphatidylinositol 3-kinases (PI3K) stimulate PKCepsilon. We studied the role of PI3K for TLCA-induced cholestasis in isolated perfused rat liver (IPRL) and isolated rat hepatocyte couplets (IRHC). In IPRL, TLCA (10 micromol/liter) impaired bile flow by 51%, biliary secretion of horseradish peroxidase, a marker of vesicular exocytosis, by 46%, and the Mrp2 substrate, 2,4-dinitrophenyl-S-glutathione, by 95% and stimulated PI3K-dependent protein kinase B, a marker of PI3K activity, by 154% and PKCepsilon membrane binding by 23%. In IRHC, TLCA (2.5 micromol/liter) impaired canalicular secretion of the fluorescent bile acid, cholylglycylamido fluorescein, by 50%. The selective PI3K inhibitor, wortmannin (100 nmol/liter), and the anticholestatic bile acid tauroursodeoxycholic acid (TUDCA, 25 micromol/liter) independently and additively reversed the effects of TLCA on bile flow, exocytosis, organic anion secretion, PI3K-dependent protein kinase B activity, and PKCepsilon membrane binding in IPRL. Wortmannin also reversed impaired bile acid secretion in IRHC. These data strongly suggest that TLCA exerts cholestatic effects by PI3K- and PKCepsilon-dependent mechanisms that are reversed by tauroursodeoxycholic acid in a PI3K-independent way.[Abstract] [Full Text] [Related] [New Search]