These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Isoprenylcysteine carboxyl methyltransferase activity modulates endothelial cell apoptosis.
    Author: Kramer K, Harrington EO, Lu Q, Bellas R, Newton J, Sheahan KL, Rounds S.
    Journal: Mol Biol Cell; 2003 Mar; 14(3):848-57. PubMed ID: 12631708.
    Abstract:
    Extracellular ATP, adenosine (Ado), and adenosine plus homocysteine (Ado/HC) cause apoptosis of cultured pulmonary artery endothelial cells through the enhanced formation of intracellular S-adenosylhomocysteine and disruption of focal adhesion complexes. Because an increased intracellular ratio of S-adenosylhomocysteine/S-adenosylmethionine favors inhibition of methylation, we hypothesized that Ado/HC might act by inhibition of isoprenylcysteine-O-carboxyl methyltransferase (ICMT). We found that N-acetyl-S-geranylgeranyl-L-cysteine (AGGC) and N-acetyl-S-farnesyl-L-cysteine (AFC), which inhibit ICMT by competing with endogenous substrates for methylation, caused apoptosis. Transient overexpression of ICMT inhibited apoptosis caused by Ado/HC, UV light exposure, or tumor necrosis factor-alpha. Because the small GTPase, Ras, is a substrate for ICMT and may modulate apoptosis, we also hypothesized that inhibition of ICMT with Ado/HC or AGGC might cause endothelial apoptosis by altering Ras activation. We found that ICMT inhibition decreased Ras methylation and activity and the activation of the downstream signaling molecules Akt, ERK-1, and ERK-2. Furthermore, overexpression of wild-type or dominant active H-Ras blocked Ado/HC-induced apoptosis. These findings suggest that inhibition of ICMT causes endothelial cell apoptosis by attenuation of Ras GTPase methylation and activation and its downstream antiapoptotic signaling pathway.
    [Abstract] [Full Text] [Related] [New Search]