These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Metabolism of tributyltin and triphenyltin by rat, hamster and human hepatic microsomes. Author: Ohhira S, Watanabe M, Matsui H. Journal: Arch Toxicol; 2003 Mar; 77(3):138-44. PubMed ID: 12632253. Abstract: Tributyltin and triphenyltin are metabolized by cytochrome P-450 system enzymes, and their metabolic fate may contribute to the toxicity of the chemicals. In the current study, the in vitro metabolism of tributyltin and triphenyltin by rat, hamster and human hepatic microsomes was investigated to elucidate the metabolic competence for these compounds in humans. The metabolic reaction using microsome-NADPH system that is usually conducted was not applicable to in vitro metabolism of organotins, especially triphenyltin. We therefore examined the effects of dithiothreitol (DTT), one of the antioxidants for sulfhydryl groups, to determine the in vitro metabolism of tributyltin and triphenyltin. As a result, the treatment with 0.1 mM DTT in vitro increased the activity of the microsomal monooxygenase system for metabolism of tributyltin as well as triphenyltin; the total yield of tributyltin and triphenyltin metabolites as tin increased, respectively, by approximately 1.8 and 8.9 times for rat, 2.1 and 1.2 times for hamster, and 1.6 and 1.5 times for human. It is suggested that the organotins directly inactivate cytochrome P-450 because of the interaction with critical sulfhydryl groups of the hemoprotein. We confirmed the utility of this in vitro metabolic system using DTT in the hepatic microsomes of phenobarbital (PB)-pretreated and untreated hamsters. Thus, the in vitro metabolic system described here was applied to a comparative study of the metabolism of organotins in rats, hamsters and humans. Tributyltin was metabolized more readily than triphenyltin in all the species. In humans, the in vitro metabolic pattern resembled that of hamsters, which were susceptible to in vivo triphenyltin toxicity because of incompetent metabolism. It is possible that the hamster is a qualitatively and quantitatively suitable animal model for exploring the influence of tributyltin and triphenyltin in humans.[Abstract] [Full Text] [Related] [New Search]