These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Heparin-binding EGF-like growth factor downregulates expression of adhesion molecules and infiltration of inflammatory cells after intestinal ischemia/reperfusion injury.
    Author: Xia G, Martin AE, Besner GE.
    Journal: J Pediatr Surg; 2003 Mar; 38(3):434-9. PubMed ID: 12632363.
    Abstract:
    BACKGROUND/PURPOSE: This study examined whether heparin-binding epidermal growth factor (EGF) like growth factor (HB-EGF), a proven intestinal cytoprotective molecule, exerts its protective effects through modulation of adhesion molecule expression and inflammatory cell infiltration, important pathogenic mediators of ischemia/reperfusion (I/R) injury. METHODS: Total midgut I/R injury in rats was achieved by occlusion of the superior mesenteric artery for 90 minutes followed by reperfusion. Rats were treated intraluminally with 600 microg/kg HB-EGF or with PBS 45 minutes after the onset of ischemia. Four- or 24-hours post-I/R, ileum was harvested and processed for immunhistochemical detection of P-/E-selectins, intercellular adhesion molecule-1 (ICAM-1)/vascular cell adhesion molecule-1 (VCAM-1), and polymorphonuclear cells (PMN)/macrophages (MPhi). RESULTS: P-/E-selectins were significantly induced in vascular endothelia 4 hours after I/R injury compared with normal intestine. HB-EGF treatment significantly down-regulated the expression of P-/E-selectins. I/R-injured intestine displayed overexpression of ICAM-1 and VCAM-1, which were significantly down-regulated by HB-EGF treatment. Lastly, I/R injury caused significant infiltration of PMN and MPhi into wounded tissue 24 hours after I/R compared with normal intestine. HB-EGF treatment significantly decreased PMN and MPhi infiltration into the injured tissue. CONCLUSIONS: HB-EGF intestinal cytoprotection is mediated, in part, by down-regulation of expression of adhesion molecules and infiltration of PMN and MPhi after intestinal I/R injury.
    [Abstract] [Full Text] [Related] [New Search]