These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Amplitude and frequency dependence of spike timing: implications for dynamic regulation.
    Author: Hunter JD, Milton JG.
    Journal: J Neurophysiol; 2003 Jul; 90(1):387-94. PubMed ID: 12634276.
    Abstract:
    The spike-time reliability of motoneurons in the Aplysia buccal motor ganglion was studied as a function of the frequency content and the relative amplitude of the fluctuations in the neuronal input, calculated as the coefficient of variation (CV). Measurements of spike-time reliability to sinusoidal and aperiodic inputs, as well as simulations of a noisy leaky integrate-and-fire neuron stimulated by spike trains drawn from a periodically modulated process, demonstrate that there are three qualitatively different CV-dependent mechanisms that determine reliability: noise-dominated (CV < 0.05 for Aplysia motoneurons) where spike timing is unreliable regardless of frequency content; resonance-dominated (CV approximately 0.05-0.25) where reliability is reduced by removal of input frequencies equal to motoneuron firing rate; and amplitude-dominated (CV >0.35) where reliability depends on input frequencies greater than motoneuron firing rate. In the resonance-dominated regime, changes in the activity of the presynaptic inhibitory interneuron B4/5 alter motoneuron spike-time reliability. The increases or decreases in reliability occur coincident with small changes in motoneuron spiking rate due to changes in interneuron activity. Injection of a hyperpolarizing current into the motoneuron reproduces the interneuron-induced changes in reliability. The rate-dependent changes in reliability can be understood from the phase-locking properties of regularly spiking motoneurons to periodic inputs. Our observations demonstrate that the ability of a neuron to support a spike-time code can be actively controlled by varying the properties of the neuron and its input.
    [Abstract] [Full Text] [Related] [New Search]