These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Phase diagrams of hard spheres with algebraic attractive interactions. Author: Camp PJ. Journal: Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 1):011503. PubMed ID: 12636502. Abstract: The phase diagrams of systems made up of hard spheres interacting with attractive potentials of the form -1/r(3+sigma) are calculated using Monte Carlo simulations, second-order thermodynamic perturbation theory, and an augmented van der Waals theory. In simulations of the systems with sigma=0.1, 1, and 3, fluid-solid coexistence results are obtained using the Gibbs-Duhem integration technique; simulation data for the vapor-liquid coexistence envelopes and critical points are taken from previously published work [P. J. Camp and G. N. Patey, J. Chem. Phys. 114, 399 (2001)]. It is shown that the agreement between the theoretical and simulated phase diagrams improves as the range of the potential is increased, reflecting the decreasing role of short-range correlations in determining the bulk thermodynamics. In the extreme case of sigma=0.1 both theories are in excellent agreement with simulations. Phase diagrams for systems with sigma=4, 5, and 6 are computed using second-order thermodynamic perturbation theory. The results indicate that the vapor-liquid transition becomes metastable with respect to freezing when sigma > or approximately equal to 5, in broad agreement with results for the hard-sphere attractive Yukawa system which is commonly used to model colloidal particles, globular proteins, and nanoparticles.[Abstract] [Full Text] [Related] [New Search]