These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Role of Smac in human leukaemic cell apoptosis and proliferation.
    Author: Jia L, Patwari Y, Kelsey SM, Srinivasula SM, Agrawal SG, Alnemri ES, Newland AC.
    Journal: Oncogene; 2003 Mar 20; 22(11):1589-99. PubMed ID: 12642862.
    Abstract:
    Smac (or DIABLO) is a recently identified, novel proapoptotic molecule, which is released from mitochondria into the cytosol during apoptosis. Smac functions by eliminating the caspase-inhibitory properties of the inhibitors of apoptosis proteins (IAP), particularly XIAP. In this study, we stably transfected both full-length (FL) and mature (MT) Smac genes into the K562 and CEM leukaemic cell lines. Both FL and MT Smac transfectants increased the sensitivity of leukaemic cells to UV light-induced apoptosis and the activation of caspase-9 and caspase-3. Purified cytosol from the mature Smac transfectants, or the addition of human recombinant Smac protein or N-7 peptide into nontransfected cytosol, showed an increased sensitivity to cytochrome c-induced activation of caspase-3. The mature Smac enhanced the susceptibility of both K562 and CEM cells to TRAIL-induced apoptosis. Overexpression of the mature Smac protein also inhibited proliferation, as detected by reduced colony formation and Ki-67 expression in leukaemic cells. Cell cycle analysis revealed that Smac transfectants displayed significant G0/G1 arrest and reduction in 5-bromo-2'-deoxyuridine (BrdU) incorporation. Smac sensitized human acute myeloid leukaemia blasts to cytochrome c-induced activation of caspase-3. However, Smac failed to overcome Apaf-1-deficiency-mediated resistance to cytochrome c in primary leukaemic blasts. In summary, this study reveals that Smac/DIABLO exhibits a potential role in increasing apoptosis and suppressing proliferation in human leukaemic cells. Importantly, it also indicates that it is crucial to evaluate the levels of Apaf-1 and XIAP proteins in patient samples before using Smac peptide therapy in the treatment of human leukaemia.
    [Abstract] [Full Text] [Related] [New Search]