These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: An FeIV=O complex of a tetradentate tripodal nonheme ligand. Author: Lim MH, Rohde JU, Stubna A, Bukowski MR, Costas M, Ho RY, Munck E, Nam W, Que L. Journal: Proc Natl Acad Sci U S A; 2003 Apr 01; 100(7):3665-70. PubMed ID: 12644707. Abstract: The reaction of [Fe(II)(tris(2-pyridylmethyl)amine, TPA)(NCCH(3))(2)](2+) with 1 equiv. peracetic acid in CH(3)CN at -40 degrees C results in the nearly quantitative formation of a pale green intermediate with lambda(max) at 724 nm ( epsilon approximately 300 M(-1).cm(-1)) formulated as [Fe(IV)(O)(TPA)](2+) by a combination of spectroscopic techniques. Its electrospray mass spectrum shows a prominent feature at mz 461, corresponding to the [Fe(IV)(O)(TPA)(ClO(4))](+) ion. The Mössbauer spectra recorded in zero field reveal a doublet with DeltaE(Q) = 0.92(2) mms and delta = 0.01(2) mms; analysis of spectra obtained in strong magnetic fields yields parameters characteristic of S = 1 Fe(IV)O complexes. The presence of an Fe(IV)O unit is also indicated in its Fe K-edge x-ray absorption spectrum by an intense 1-s --> 3-d transition and the requirement for an ON scatterer at 1.67 A to fit the extended x-ray absorption fine structure region. The [Fe(IV)(O)(TPA)](2+) intermediate is stable at -40 degrees C for several days but decays quantitatively on warming to [Fe(2)(mu-O)(mu-OAc)(TPA)(2)](3+). Addition of thioanisole or cyclooctene at -40 degrees C results in the formation of thioanisole oxide (100% yield) or cyclooctene oxide (30% yield), respectively; thus [Fe(IV)(O)(TPA)](2+) is an effective oxygen-atom transfer agent. It is proposed that the Fe(IV)O species derives from OO bond heterolysis of an unobserved Fe(II)(TPA)-acyl peroxide complex. The characterization of [Fe(IV)(O)(TPA)](2+) as having a reactive terminal Fe(IV)O unit in a nonheme ligand environment lends credence to the proposed participation of analogous species in the oxygen activation mechanisms of many mononuclear nonheme iron enzymes.[Abstract] [Full Text] [Related] [New Search]