These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dose-response analysis of short-term effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin in three differentially susceptible rat lines.
    Author: Simanainen U, Tuomisto JT, Tuomisto J, Viluksela M.
    Journal: Toxicol Appl Pharmacol; 2003 Mar 01; 187(2):128-36. PubMed ID: 12649045.
    Abstract:
    Line A, B, and C rats were selectively bred from TCDD-resistant Han/Wistar (Kuopio; H/W) and TCDD-sensitive Long-Evans (Turku/AB; L-E) rats. Line A rats are the most resistant to TCDD acute lethality followed by line B and line C rats. The resistance in line A rats is associated with a mutated H/W-type aryl hydrocarbon receptor (Ahr) allele (Ahr(hw)) and in line B rats the resistance is associated with an allele of an unknown gene B (B(hw)), while line C rats are almost as sensitive to TCDD as L-E rats. The dose-responses of characteristic short-term effects (day 8 postexposure) of TCDD were used to evaluate the efficacy (magnitude of effect) and potency relationships between these lines. Line A rats showed similar efficacies as line C (line A:line C efficacy ratio more than 0.7) for thymus weight, EROD activity, and incisor tooth defects. In contrast, efficacies in line A were decreased (efficacy ratios 0.19-0.37) for body weight change, serum bilirubin, and FFA levels, and serum ASAT activity. For most endpoints the efficacies in line B rats seem to be lower than in line C rats. The potencies were close to each other in line A and B rats, but somewhat lower than in line C rats. The results support our previous concept of two different AHR-mediated signaling pathways leading to dioxin type I and type II endpoints. Rats with the Ahr(hw/hw) genotype show a markedly decreased efficacy for type II endpoints, but B(hw) allele had only a minor effect on efficacies for most endpoints. Both H/W-type resistance alleles also decreased the potency of TCDD. However, the potency differences in short-term toxicity seem not to explain, at least alone, the differences seen in acute lethality among the rat lines.
    [Abstract] [Full Text] [Related] [New Search]