These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The functional effect of adenoviral Na+/Ca2+ exchanger overexpression in rabbit myocytes depends on the activity of the Na+/K+-ATPase. Author: Schillinger W, Ohler A, Emami S, Müller F, Christians C, Janssen PM, Kögler H, Teucher N, Pieske B, Seidler T, Hasenfuss G. Journal: Cardiovasc Res; 2003 Mar 15; 57(4):996-1003. PubMed ID: 12650877. Abstract: OBJECTIVES: The functional consequences of Na+/Ca2+ exchanger (NCX) overexpression in heart failure have been controversially discussed. NCX function strongly depends on intracellular sodium which has been shown to be increased in heart failure. METHODS AND RESULTS: We investigated the Na+/K+-ATPase (NKA) inhibitor ouabain (0.5-16 micromol/l) in electrically stimulated, isotonically contracting adult rabbit cardiocytes overexpressing NCX after adenoviral gene transfer (Ad-NCX-GFP, 48 h culture time). Myocytes transfected with adenovirus encoding for green fluorescent protein (Ad-GFP) served as a control. Contractions were analyzed by video-edge detection. In the Ad-NCX-GFP group, the maximum inotropic response was significantly reduced by 50.7% (P<0.05). This was a result of an enhanced susceptibility to contracture after exposure to the drug (median concentration (25-75%): 4 (4-8) vs. 8 (6-16) micromol/l, P<0.05). When analyzing relaxation before contracture, the maximum relaxation velocity was reduced (0.15+/-0.04 vs. 0.27+/-0.04 microm/s, P<0.05) and the time from peak shortening to 90% of relaxation was increased (298+/-39 vs. 185+/-15 ms, P<0.05). No differences in systolic and diastolic parameters were observed with the Na+ channel modulator BDF9198 (1 micromol/l). CONCLUSIONS: Inhibition of NKA by ouabain induces a combined diastolic and systolic dysfunction in NCX overexpressing rabbit myocytes. This may be the consequence of cytoplasmic Ca2+ overload due to inhibition of forward mode or induction of reverse mode Na+/Ca2+ exchange. In end-stage failing human myocardium and during digitalis treatment this mechanism may be of major importance.[Abstract] [Full Text] [Related] [New Search]