These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ganglioside GD1a impedes lipopolysaccharide-induced maturation of human dendritic cells.
    Author: Shen W, Ladisch S.
    Journal: Cell Immunol; 2002 Dec; 220(2):125-33. PubMed ID: 12657247.
    Abstract:
    Immunosuppressive membrane gangliosides are released by tumor cells and inhibit normal antigen presenting cell (APC) function. To better understand this process, we have studied the effect of gangliosides on lipopolysaccharide (LPS)-induced maturation of human dendritic cells (DCs). Immature DCs were generated in vitro from human peripheral blood monocytes and were exposed for 72 h to a highly purified ganglioside, G(D1a). During the last 24 h, LPS was added to effect maturation. As assessed by fluorescence activated cell sorting (FACS) analysis, incubation in 50 microM G(D1a) significantly blunted the LPS-induced maturation of the dendritic cells. The expected up-regulation of expression of the co-stimulatory molecules CD80 and CD86 was ablated and that of CD40 was reduced, as were surface CD83 expression and intracellular CD208 production. In addition, ganglioside pretreatment of DC markedly inhibited the allostimulatory capacity and partially prevented the down-regulation of FITC-dextran uptake characteristic of LPS-activated DC. Furthermore, ganglioside-exposed DC also evidenced a broad down-regulation of the cytokine release that is normally initiated by LPS exposure, i.e., there was no increase in IL-1 beta, IL-6, IL-10, IL-12, or tumor necrosis factor (TNF)-alpha release. That a common mechanism may underlie these defects was suggested by the finding that G(D1a) exposure of DC also inhibited the nuclear binding of NF-kappa B that is normally induced by LPS. These results suggest that tumor gangliosides may blunt the anti-tumor immune response in vivo by binding and interfering with dendritic cell maturation.
    [Abstract] [Full Text] [Related] [New Search]