These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Staphylococcus aureus accessory gene regulator (agr) group II: is there a relationship to the development of intermediate-level glycopeptide resistance? Author: Sakoulas G, Eliopoulos GM, Moellering RC, Novick RP, Venkataraman L, Wennersten C, DeGirolami PC, Schwaber MJ, Gold HS. Journal: J Infect Dis; 2003 Mar 15; 187(6):929-38. PubMed ID: 12660939. Abstract: We previously determined that all 6 Staphylococcus aureus strains with confirmed intermediate-level resistance to glycopeptides (glycopeptide intermediate S. aureus [GISA]) from the United States that we tested belonged to accessory gene regulator (agr) group II. In the present study, we found that 56% of surveyed bloodstream methicillin-resistant S. aureus isolates (n = 148) at our hospital were agr group II, whereas only 24% of methicillin-susceptible S. aureus isolates (n = 33) were agr group II (P = .001). Population analysis of genetically engineered agr-null and parent wild-type strains of groups I, II, and IV revealed that, when agr function is lost, the agr group II knockout S. aureus was most likely to develop glycopeptide heteroresistance after growth in 1 microg/mL but not 16 microg/mL vancomycin. This strain was unique in showing decreased autolysis after growth in these conditions. This study suggests that some S. aureus strains have an intrinsic survival advantage under a glycopeptide selective pressure, which is possibly related to reduced autolysis after exposure to subinhibitory concentrations of glycopeptide.[Abstract] [Full Text] [Related] [New Search]