These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Outward K+ channels in Brassica chinensis pollen protoplasts are regulated by external and internal pH.
    Author: Fan LM, Wang YF, Wu WH.
    Journal: Protoplasma; 2003 Mar; 220(3-4):143-52. PubMed ID: 12664278.
    Abstract:
    Patch-clamp whole-cell and single-channel recording techniques were used to investigate the regulation of outward K(+) channels by external and internal protons in Brassica chinensispollen protoplasts. Outward K(+) currents and conductance were insensitive to external pH (pH(o)) except at pH 4.5. Maximal conductance (G(max)) for the outward K(+) currents was inhibited at acidic external pH. Half-activation voltage ( E(1/2)) for the outward K(+) currents shifted to more positive voltages along with the decrease in pH(o). E(1/2) can be described by a modified Henderson-Hasselbalch equation expected from a single titratable binding site. The activation kinetics of the outward K(+) channels was largely insensitive to pH(o). An internal pH (pH(i)) of 4.5 significantly increased outward K(+) currents and conductance. G(max) for the outward K(+) currents decreased with elevations in pH(i). In contrast to the effect of pH(o), E(1/2) was shifted to more positive voltages with elevations in pH(i). The outward K(+) currents, G(max) and E(1/2) can be described by the modified Henderson-Hasselbalch equation. Furthermore, acidifying pH(i) accelerated the activation of the outward K(+) currents significantly. The differences in electro-physiological properties among previously reported and currently described plant outward K(+) channels may reflect differences in the structure of these channels.
    [Abstract] [Full Text] [Related] [New Search]