These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The role of active metabolites in dihydrocodeine effects. Author: Schmidt H, Vormfelde SV, Walchner-Bonjean M, Klinder K, Freudenthaler S, Gleiter CH, Gundert-Remy U, Skopp G, Aderjan R, Fuhr U. Journal: Int J Clin Pharmacol Ther; 2003 Mar; 41(3):95-106. PubMed ID: 12665158. Abstract: OBJECTIVE: The metabolism of dihydrocodeine to dihydromorphine, a high affinity mu-opioid receptor ligand in membrane homogenates, is catalyzed by CYP2D6. However, it is not clear whether an active CYP2D6 enzyme is required for opioid receptor-mediated effects in man after standard dihydrocodeine doses. METHODS: Whole cell opioid-receptor affinity and effects on cAMP accumulation of dihydrocodeine and its metabolites were determined in differentiated SH-SY5Y neuroblastoma cells. In a double-blind, 2-period, placebo-controlled randomized crossover pilot study the pharmacokinetics of dihydrocodeine (60 mg single dose) and its metabolites were examined in 5 phenotyped extensive (EMs) and 4 poor metabolizers (PMs) for CYP2D6, and pharmacodynamics were evaluated using a pain threshold model and dynamic pupillometry. RESULTS: Displacement binding and cAMP accumulation experiments showed clearly higher affinities (100- and 50-fold) and activities (180- and 250-fold) of dihydromorphine and dihydromorphine-6-glucuronide, respectively, whereas the other metabolites had similar or lower affinities and activities as compared to dihydrocodeine. The clinical study revealed no significant difference in plasma or urine pharmacokinetics between EMs and PMs for dihydrocodeine and its glucuronide. Dihydromorphine and its glucuronides were detectable in EMs only. A clear reduction of initial pupil diameters was observed up to 6 hours postdose in both PMs and EMs, with no obvious differences between CYP2D6 phenotypes. In the pain threshold model no effects were observed in either group. CONCLUSION: CYP2D6 phenotype has no major impact on opioid receptor-mediated effects of a single 60 mg dihydrocodeine dose, despite the essential role of CYP2D6 in formation of highly active metabolites.[Abstract] [Full Text] [Related] [New Search]