These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dose-dependent protection of cardiac function by propofol during ischemia and early reperfusion in rats: effects on 15-F2t-isoprostane formation.
    Author: Xia Z, Godin DV, Chang TK, Ansley DM.
    Journal: Can J Physiol Pharmacol; 2003 Jan; 81(1):14-21. PubMed ID: 12665253.
    Abstract:
    We examined the effects of propofol (2,6-diisopropylphenol) on functional recovery and 15-F2t-isoprostane generation during ischemia-reperfusion in Langendorff-perfused rat hearts. Before the induction of 40 min of global ischemia, hearts were perfused (10 min) with propofol at 5 (lo-P) or 12 microg/mL (hi-P) in saline or with saline only (control). During ischemia, saline, lo-P, or hi-P was perfused through the aorta at 60 microL/min. During the first 15 min of reperfusion, propofol (5 or 12 microg/mL) was continued, followed by perfusion with 5 microg/mL propofol for 75 min in both propofol-treated groups. After 90 min of reperfusion (Rep-90), heart tissues were harvested for assessment of antioxidant status. In hi-P, we observed increased latency to and greater reduction of ischemic contracture relative to the lo-P or control groups. 15-F2t-Isoprostane concentrations increased during ischemia and were significantly lower in hi-P and lo-P than in control (P < 0.01). At Rep-90, myocardial functional recovery was greater in both propofol-treated groups relative to control, and it correlated positively with tissue antioxidant capacity preservation. Tissue antioxidant capacity was better preserved in hi-P than in lo-P treatment (P < 0.05). We conclude that oxidant injury occurs during ischemia and reperfusion, and propofol provides dose-dependent protection primarily by enhancing tissue antioxidant capacity and reducing lipid peroxidation.
    [Abstract] [Full Text] [Related] [New Search]