These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Enantiospecific disposition of pranoprofen in beagle dogs and rats. Author: Imai T, Nomura T, Aso M, Otagiri M. Journal: Chirality; 2003 May 05; 15(4):312-7. PubMed ID: 12666237. Abstract: The pharmacokinetic characteristics of pranoprofen enantiomer were examined and compared with the disposition of the corresponding isomer after the administration of racemic pranoprofen to beagle dogs and rats. The plasma levels of (+)-(S)-isomer were significantly higher than those of (-)-(R)-isomer in dogs and rats by either intravenous or oral administration. Although the oral bioavailability and absorption rate constant between the (-)-(R)- and (+)-(S)-form was the same, the elimination rate constant of the (+)-(S)-form was significantly lower than that of the (-)-(R)-form in both dogs and rats. This discrepancy can be explained on the basis of differences in protein binding and the metabolism of the two enantiomers. The (-)-(R)-isomer was predominantly conjugated depending on its higher free plasma level and its faster metabolic rate than the (+)-(S)-form, and thus was excreted more rapidly in the urine and bile in the form of pranoprofen glucuronide. Furthermore, a (-)-(R)- to (+)-(S)-inversion occurred to the extent of 14% in beagle dogs, but not in rats. This chiral inversion might be an important factor in the slow elimination of the (+)-(S)-form in dogs. The most efficient organ for chiral inversion was the liver, followed by kidney and intestine.[Abstract] [Full Text] [Related] [New Search]