These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Serotonin inhibits glutamate- but not PACAP-induced per gene expression in the rat suprachiasmatic nucleus at night.
    Author: Sanggaard KM, Hannibal J, Fahrenkrug J.
    Journal: Eur J Neurosci; 2003 Mar; 17(6):1245-52. PubMed ID: 12670312.
    Abstract:
    Circadian rhythms of physiology and behaviour generated by the brain's biological clock located in the suprachiasmatic nucleus are entrained by light via the retinohypothalamic tract. Two neurotransmitters, glutamate and pituitary adenylate cyclase-activating polypeptide (PACAP), found in this monosynaptic pathway mediate the effects of light to the clock. It is well known that not only light entrains the clock. Nonphotic cues mediated by neurotransmitters such as serotonin reaching the suprachiasmatic nucleus from the midbrain raphe nucleus modulate light-induced phase shifts at night. Two clock genes, per1 and per2, have been attributed a role in light-induced phase shift. In the present study, using an in vitro brain slice model and quantitative in situ hybridization for per1 and per2, we have shown that serotonin induces per1 gene expression at late subjective night but not at early night. Furthermore, serotonin application before glutamate or PACAP blocked glutamate-induced per1 expression at early night and per2 gene expression at late night. In contrast, serotonin did not influence PACAP-induced per gene expression at late night. Triple antigen immunohistochemistry and confocal microscopy supported both a pre- and post-synaptic interaction of retinohypothalamic tract (PACAP-immunoreactive) and serotonin projections on vasoactive intestinal peptide- and gastrin-releasing peptide-containing cell bodies in the ventro-lateral suprachiasmatic nucleus. Our findings suggest that the per genes could be the molecular target for the modulatory effects of serotonin on light signalling to the clock.
    [Abstract] [Full Text] [Related] [New Search]