These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protective effect of green tea polyphenol (-)-epigallocatechin gallate and other antioxidants on lipid peroxidation in gerbil brain homogenates.
    Author: Lee SR, Im KJ, Suh SI, Jung JG.
    Journal: Phytother Res; 2003 Mar; 17(3):206-9. PubMed ID: 12672147.
    Abstract:
    The aim of this study was to compare the protective effects of green tea polyphenol (-)-epigallocatechin gallate (EGCG) and other well-known antioxidants on the lipid peroxidation in gerbil brain homogenates. Oxidative stress was induced by H2O2 (10 mM) or ferrous ammonium sulfate (5 microM) and lipid peroxidation was studied. Hydrogen peroxide and ferrous ions are capable of oxidizing a wide range of substrates and causing biological damage. The reaction, referred to as the Fenton process, is complex and can generate both hydroxyl radicals and higher oxidation states of the iron. Thiobarbituric acid-reactive substances (TBA-RS) were used as a marker of lipid peroxidation. EGCG, trolox, lipoic acid, and melatonin reduced H2O2- or ferrous ion-induced lipid peroxidation in a concentration-dependent manner. In reducing the H2O2-induced lipid peroxidation, IC50 values of antioxidants were as follows: EGCG (0.66 microM), trolox (37.08 microM), lipoic acid (7.88 mM), and melatonin (19.11 mM). In reducing the ferrous ion-induced lipid peroxidation, IC50 values of antioxidants were as follows: EGCG (3.32 microM), trolox (75.65 microM), lipoic acid (7.63 mM), and melatonin (15.48 mM). Under the in vitro conditions of this experiment, EGCG was the most potent antioxidant in inhibiting H2O2 or ferrous ion-induced lipid peroxidation in the gerbil brain homogenates.
    [Abstract] [Full Text] [Related] [New Search]