These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A role of xylanase, alpha-L-arabinofuranosidase, and xylosidase in xylan degradation.
    Author: Rahman AK, Sugitani N, Hatsu M, Takamizawa K.
    Journal: Can J Microbiol; 2003 Jan; 49(1):58-64. PubMed ID: 12674349.
    Abstract:
    Renewable natural resources such as xylans are abundant in many agricultural wastes. Penicillium sp. AHT-1 is a strong producer of xylanolytic enzymes. The sequential activities of its xylanase, alpha-L-arabinofuranosidase, and beta-xylosidase on model hemicellulose oat-spelt xylan was investigated. Optimum production of the enzymes was found in culture containing oat-spelt xylan at 30 degrees C and initial pH 7.0 after 6 days. The enzymes were partially purified by ammonium sulphate fractionation and anion-exchange chromatography on DEAE-Toyopearl 650 S. The apparent molecular mass was 21 kDa, and the protein displayed an "endo" mode of action. The xylanase exhibited glycotansferase activity. It synthesized higher oligosaccharides from the initial substrates, and xylotriose was the shortest unit of substrate transglycosylated. Xylanolytic enzymes (enzyme mixture) produced by this Penicillium sp. interacted cooperatively and sequentially in the hydrolysis of oat-spelt xylan in the following order: alpha-L-arabinofuranosidase --> xylanase --> beta-xylosidase. All three enzymes exhibited optimal activity under the same conditions (temperature, pH, cultivation), indicating that they alone are sufficient to completely depolymerize the test xylan. Results indicate that the xylanolytic enzyme mixture of Penicillium sp. AHT-1 could be useful for bioconversion of xylan-rich plant wastes to value-added products.
    [Abstract] [Full Text] [Related] [New Search]