These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Structure-based inhibitor discovery against adenylyl cyclase toxins from pathogenic bacteria that cause anthrax and whooping cough.
    Author: Soelaiman S, Wei BQ, Bergson P, Lee YS, Shen Y, Mrksich M, Shoichet BK, Tang WJ.
    Journal: J Biol Chem; 2003 Jul 11; 278(28):25990-7. PubMed ID: 12676933.
    Abstract:
    Edema factor (EF) and CyaA are adenylyl cyclase toxins secreted by pathogenic bacteria that cause anthrax and whooping cough, respectively. Using the structure of the catalytic site of EF, we screened a data base of commercially available, small molecular weight chemicals for those that could specifically inhibit adenylyl cyclase activity of EF. From 24 compounds tested, we have identified one quinazoline compound, ethyl 5-aminopyrazolo[1,5-a]quinazoline-3-carboxylate, that specifically inhibits adenylyl cyclase activity of EF and CyaA with approximately 20 microm Ki. This compound neither affects the activity of host resident adenylyl cyclases type I, II, and V nor exhibits promiscuous inhibition. The compound is a competitive inhibitor, consistent with the prediction that it binds to the adenine portion of the ATP binding site on EF. EF is activated by the host calcium sensor, calmodulin. Surface plasmon resonance spectroscopic analysis shows that this compound does not affect the binding of calmodulin to EF. This compound is dissimilar from a previously described, non-nucleoside inhibitor of host adenylyl cyclase. It may serve as a lead to design antitoxins to address the role of adenylyl cyclase toxins in bacterial pathogenesis and to fight against anthrax and whooping cough.
    [Abstract] [Full Text] [Related] [New Search]