These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The Formin family protein, formin homolog overexpressed in spleen, interacts with the insulin-responsive aminopeptidase and profilin IIa. Author: Tojo H, Kaieda I, Hattori H, Katayama N, Yoshimura K, Kakimoto S, Fujisawa Y, Presman E, Brooks CC, Pilch PF. Journal: Mol Endocrinol; 2003 Jul; 17(7):1216-29. PubMed ID: 12677009. Abstract: Insulin stimulates translocation of glucose transporter isoform type 4 (GLUT4) and the insulin-responsive aminopeptidase (IRAP) from an intracellular storage pool to the plasma membrane in muscle and fat cells. A role for the cytoskeleton in insulin action has been postulated, and the insulin signaling pathway has been well investigated; however, the molecular mechanism by which GLUT4/IRAP-containing vesicles move from an interior location to the cell surface in response to insulin is incompletely understood. Here, we have screened for IRAP-binding proteins using a yeast two-hybrid system and have found that the C-terminal domain of FHOS (formin homolog overexpressed in spleen) interacts with the N-terminal cytoplasmic domain of IRAP. FHOS is a member of the Formin/Diaphanous family of proteins that is expressed most abundantly in skeletal muscle. In addition, there are two novel types of FHOS transcripts generated by alternative mRNA splicing. FHOS78 has a 78-bp insertion and it is expressed mainly in skeletal muscle where it may be the most abundant isoform in humans. The ubiquitously expressed FHOS24 has a 24-bp insertion encoding an in-frame stop codon that results in a truncated polypeptide. It is known that some formin family proteins interact with the actin-binding profilin proteins. Both FHOS and FHOS78 bound to profilin IIa via their formin homology 1 domains, but neither bound profilin I or IIb. Overexpression of FHOS and FHOS78 resulted in enhanced insulin-stimulated glucose uptake in L6 cells to similar levels. However, overexpression of FHOS24, lacking the IRAP-binding domain, did not affect insulin-stimulated glucose uptake. These findings suggest that FHOS mediates an interaction between GLUT4/IRAP-containing vesicles and the cytoskeleton and may participate in exocytosis and/or retention of this membrane compartment.[Abstract] [Full Text] [Related] [New Search]