These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Acute control of insulin-like growth factor-I gene transcription by growth hormone through Stat5b. Author: Woelfle J, Billiard J, Rotwein P. Journal: J Biol Chem; 2003 Jun 20; 278(25):22696-702. PubMed ID: 12682066. Abstract: Many of the effects of growth hormone (GH) are mediated by insulin-like growth factor-I (IGF-I), a secreted peptide whose gene transcription is induced by GH by unknown mechanisms. Recent studies in mice have implicated Stat5b as part of a GH-regulated somatic growth pathway, because mice lacking this transcription factor show diminished growth rates and a decline in serum IGF-I levels. To test the role of Stat5b in GH-stimulated IGF-I gene expression, we have delivered modified versions of the protein to pituitary-deficient male rats by quantitative adenovirus-mediated gene transfer. In pilot studies in cell culture, both constitutively active and dominant-negative Stat5b appropriately regulated transcription from a GH-responsive Stat5-dependent reporter gene. After in vivo expression, neither protein impaired GH-induced activation of cytoplasmic signaling pathways or blocked nuclear accumulation of Stats 1 and 3 in the liver, the major site of IGF-I production. Dominant-negative Stat5b completely prevented GH-stimulated IGF-I gene transcription, whereas constitutively active Stat5b led to robust IGF-I gene expression in the absence of hormone. An adenovirus encoding enhanced green fluorescent protein was without effect. Similar results were seen with the GH-responsive Stat5b-dependent Spi 2.1 gene, whereas GH-stimulated c-fos transcription was minimally altered. These results establish Stat5b as a key component of GH-stimulated IGF-I gene transcription, and they demonstrate the feasibility of using in vivo gene transfer to target distinct components of hormone-activated signaling pathways.[Abstract] [Full Text] [Related] [New Search]