These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mineralocorticoid regulation of epithelial Na+ channels is maintained in a mouse model of Liddle's syndrome.
    Author: Dahlmann A, Pradervand S, Hummler E, Rossier BC, Frindt G, Palmer LG.
    Journal: Am J Physiol Renal Physiol; 2003 Aug; 285(2):F310-8. PubMed ID: 12684224.
    Abstract:
    Currents through epithelial Na channels (ENaCs) were measured in the cortical collecting tubule (CCT) of mice expressing truncated beta-subunits of ENaC, reproducing one of the mutations found in human patients with Liddle's syndrome. Tubules were isolated from mice homozygous for the Liddle mutation (L/L) and from wild-type (WT) littermates. Amiloride-sensitive currents (INa) from single cells were recorded under whole cell clamp conditions. CCTs from mice kept under control conditions and fed a diet with normal levels of Na had very small INas (WT: 18 +/- 13 pA; L/L: 22 +/- 8 pA at Vm = -100 mV) that were not different in WT and L/L animals. However, the L/L mice had much larger currents when the animals were fed a low-Na diet (WT: 256 +/- 127 pA; L/L: 1,820 +/- 330 pA) or infused with aldosterone (WT: 285 +/- 63 pA; L/L: 1,600 +/- 280 pA). Currents from L/L mice were also larger when animals were pretreated with a high-K diet but not when the CCTs were stimulated in vitro with 8-CTP-cAMP. Noise analysis of amiloride-induced fluctuations in INa showed that single-channel currents at Vm = 0 mV were slightly smaller in L/L mice (WT: 0.33 pA; L/L: 0.24 pA). This difference could be attributed to a decrease in driving force since current-voltage analysis indicated that intracellular Na was increased in the L/L animals. Analysis of spontaneous channel noise indicated that the open probability was similar in the two genotypes(WT: 0.77; L/L: 0.80). Thus the increase in whole cell current is attributed to a difference in the density of conducting channels.
    [Abstract] [Full Text] [Related] [New Search]