These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Responses of single motor units in human masseter to transcranial magnetic stimulation of either hemisphere.
    Author: Pearce SL, Miles TS, Thompson PD, Nordstrom MA.
    Journal: J Physiol; 2003 Jun 01; 549(Pt 2):583-96. PubMed ID: 12692177.
    Abstract:
    The corticobulbar inputs to single masseter motoneurons from the contra- and ipsilateral motor cortex were examined using focal transcranial magnetic stimulation (TMS) with a figure-of-eight stimulating coil. Fine-wire electrodes were inserted into the masseter muscle of six subjects, and the responses of 30 motor units were examined. All were tested with contralateral TMS, and 87 % showed a short-latency excitation in the peristimulus time histogram at 7.0 +/- 0.3 ms. The response was a single peak of 1.5 +/- 0.2 ms duration, consistent with monosynaptic excitation via a single D- or I1-wave volley elicited by the stimulus. Increased TMS intensity produced a higher response probability (n = 13, paired t test, P < 0.05) but did not affect response latency. Of the remaining motor units tested with contralateral TMS, 7 % did not respond at intensities tested, and 7 % had reduced firing probability without any preceding excitation. Sixteen of these motor units were also tested with ipsilateral TMS and four (25 %) showed short-latency excitation at 6.7 +/- 0.6 ms, with a duration of 1.5 +/- 0.3 ms. Latency and duration of excitatory peaks for these four motor units did not differ significantly with ipsilateral vs. contralateral TMS (paired t tests, P > 0.05). Of the motor units tested with ipsilateral TMS, 56 % responded with a reduced firing probability without a preceding excitation, and 19 % did not respond. These data suggest that masseter motoneurons receive monosynaptic input from the motor cortex that is asymmetrical from each hemisphere, with most low threshold motoneurons receiving short-latency excitatory input from the contralateral hemisphere only.
    [Abstract] [Full Text] [Related] [New Search]