These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Stereochemical aspects in the 4-vinylcyclohexene biotransformation with rat liver microsomes and purified cytochrome P450s: diepoxide formation and hydrolysis.
    Author: Chiappe C, De Rubertis A, Piegari G, Amato G, Gervasi PG.
    Journal: Chem Res Toxicol; 2003 Jan; 16(1):56-65. PubMed ID: 12693031.
    Abstract:
    The stereochemical course of the biotransformation of 1,2-monoepoxides of 4-vinylcyclohexene (2 and 3) by liver microsomes from control and induced rats and by purified P4502B1 and P4502E1 has been determined. The epoxidation of monoexpodies cis-4-vinylcyclohexene 1,2-epoxide (2) and trans-4-vinylcyclohexene 1,2-epoxide (3) gives the corresponding eight isomeric diepoxides cis-4-vinylcyclohexene diepoxide (9) and trans-4-vinylcyclohexene diepoxide (10). The stereoselectivity of this process is affected by P450 induction. Phenobarbital is able to enhance the yield of epoxidation to give preferentially diepoxide (1R, 2S, 4R, 7R)-trans-10b. This enantiomer is also formed as nearly the sole product by P450-catalyzed epoxidation of (1R,2S,4R)-trans-3b, the monoepoxide that, as a consequence of the selective formation from 4-vinylcyclohexene and/or reduced elimination by epoxide hydrolase, tends to accumulate in rat. Also, the P4502B1 but not 2E1, in a reconstituted system, is able to perform the epoxidation of (1R,2S,4R)-trans-3b to produce selectively the same diepoxide. Diepoxides cis-9 and trans-10 are biotransformed by mEH catalyzed hydrolysis. Although the hydrolysis of diepoxides 9 is characterized by a lower substrate enantioselection, the reaction of diepoxides 10 occurs with a good substrate enantioselectivity favoring the hydrolysis of the epoxides (1R,2S,4R,7S)-trans-10b and (1S,2R,4S,7S)-trans-10a. Diepoxide (1R,2S,4R,7R)-trans-10b is therefore the isomer primarily formed by P450-catalyzed oxidation of monoepoxide trans-3, and it is also the compound showing the lower propensity to undergo mEH-catalyzed hydrolysis. On the basis of this result, the ovotoxicity of 4-vinylcyclohexene is expected to be due to the stereoisomer diepoxide (1R,2S,4R,7R)-trans-10b, whose biological reactivity, via cross-linking, may be strongly different to the other isomer diepoxides, being dependent by its specific conformation.
    [Abstract] [Full Text] [Related] [New Search]