These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Human liver microsomal metabolism and DNA adduct formation of the tumorigenic pyrrolizidine alkaloid, riddelliine.
    Author: Xia Q, Chou MW, Kadlubar FF, Chan PC, Fu PP.
    Journal: Chem Res Toxicol; 2003 Jan; 16(1):66-73. PubMed ID: 12693032.
    Abstract:
    Riddelliine, a widespread naturally occurring genotoxic pyrrolizidine alkaloid, induced liver tumors in rats and mice in an NTP 2-year carcinogenicity bioassay. We have determined that riddelliine induces liver tumors in rats through a genotoxic mechanism involving the formation of (+/-)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP), which reacts with DNA to form a set of eight DNA adducts. To determine the relevance to humans of the results obtained in experimental animals, the metabolism of riddelliine was conducted using human liver microsomes. As with rat liver microsomes, DHP and riddelliine N-oxide were major metabolites in incubations conducted with human liver microsomes. The levels of DHP and riddelliine N-oxide were 0.20-0.62 and 0.03-0.15 nmol/min/mg protein, respectively, which are comparable to those obtained from rat liver microsomal metabolism. When metabolism was conducted in the presence of calf thymus DNA, the same set of eight DHP-derived DNA adducts was formed. Both the metabolism pattern and DNA adduct profile were very similar to those obtained from rat liver microsomes. When metabolism was conducted in the presence of the P450 3A4 enzyme inhibitor triacetyleandomycin, the formation of DHP and riddelliine N-oxide was reduced 84 and 92%, respectively. For DHP formation, the Km values were determined to be 0.37 +/- 0.05 and 0.66 +/- 0.08 mM from female rats and female humans; the Vmax values from female rat and human liver microsomal metabolism were 0.48 +/- 0.03 and 1.70 +/- 0.09 nmol/min/mg protein, respectively. These results strongly indicate the mechanistic data on liver tumor induction obtained for riddelliine in laboratory rodents is highly relevant to humans.
    [Abstract] [Full Text] [Related] [New Search]