These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Carbonyl group of aliphatic side chain of pentoxifylline does not play role for P-glycoprotein antagonizing effect of pentoxifylline.
    Author: Kupsáková I, Docolomanský P, Rybár A, Barancík M, Breier A.
    Journal: Gen Physiol Biophys; 2002 Dec; 21(4):471-8. PubMed ID: 12693718.
    Abstract:
    Previously we have found that pentoxifylline (PTX), but not caffeine, theophylline, or 1-methyl-3-isobutylxanthine, affects sensitivity of L1210/VCR cells, a line with multidrug resistance mediated by P-glycoprotein (P-gp) to vincristine (VCR) and doxorubicine. Comparison of chemical structure of PTX with other above xanthines has revealed only one marked difference. PTX contains extended aliphatic chain containing reactive electrophilic carbonyl group in the position N1. The investigation of possibility that this group is crucial for PTX-induced MDR reversal represents the aim of the current paper. To prove this hypothesis, we used the new synthesized PTX derivative in which the carbonyl group is modified by a substance containing amino-group and the product of reaction is the respective Schiff base (SB). Successful reaction was observed when PTX reacted with 3,5-diaminobenzenesulfonyl acid (DABS). The product of reaction of DABS with carbonyl group of aliphatic part of PTX was proved using NMR and IR spectroscopy. We found that the resulting PTX derivative PTX-SB revealed higher cytotoxicity on both sensitive L1210 and multidrug resistant L1210/VCR cells than PTX. Moreover, PTX-SB exerts more pronounced MDR reversal effect on L1210/VCR cells than PTX. These results indicate that electrophilic carbonyl group on aliphatic chain located in position N1 of PTX is not essential for MDR reversal effects of PTX.
    [Abstract] [Full Text] [Related] [New Search]