These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of heating and cooling on nerve terminal impulses recorded from cold-sensitive receptors in the guinea-pig cornea.
    Author: Carr RW, Pianova S, Fernandez J, Fallon JB, Belmonte C, Brock JA.
    Journal: J Gen Physiol; 2003 May; 121(5):427-39. PubMed ID: 12695483.
    Abstract:
    An in vitro preparation of the guinea-pig cornea was used to study the effects of changing temperature on nerve terminal impulses recorded extracellularly from cold-sensitive receptors. At a stable holding temperature (31-32.5 degrees C), cold receptors had an ongoing periodic discharge of nerve terminal impulses. This activity decreased or ceased with heating and increased with cooling. Reducing the rate of temperature change reduced the respective effects of heating and cooling on nerve terminal impulse frequency. In addition to changes in the frequency of activity, nerve terminal impulse shape also changed with heating and cooling. At the same ambient temperature, nerve terminal impulses were larger in amplitude and faster in time course during heating than those recorded during cooling. The magnitude of these effects of heating and cooling on nerve terminal impulse shape was reduced if the rate of temperature change was slowed. At 29, 31.5, and 35 degrees C, a train of 50 electrical stimuli delivered to the ciliary nerves at 10-40 Hz produced a progressive increase in the amplitude of successive nerve terminal impulses evoked during the train. Therefore, it is unlikely that the reduction in nerve terminal impulse amplitude observed during cooling is due to the activity-dependent changes in the nerve terminal produced by the concomitant increase in impulse frequency. Instead, the differences in nerve terminal impulse shape observed at the same ambient temperature during heating and cooling may reflect changes in the membrane potential of the nerve terminal associated with thermal transduction.
    [Abstract] [Full Text] [Related] [New Search]