These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A mutation in a CD44 variant of inflammatory cells enhances the mitogenic interaction of FGF with its receptor.
    Author: Nedvetzki S, Golan I, Assayag N, Gonen E, Caspi D, Gladnikoff M, Yayon A, Naor D.
    Journal: J Clin Invest; 2003 Apr; 111(8):1211-20. PubMed ID: 12697740.
    Abstract:
    Synovial fluid cells from joints of rheumatoid arthritis (RA) patients express a novel variant of CD44 (designated CD44vRA), encoding an extra trinucleotide (CAG) transcribed from intronic sequences flanking a variant exon. The CD44vRA mutant was detected in 23 out of 30 RA patients. CD44-negative Namalwa cells transfected with CD44vRA cDNA or with CD44v3-v10 (CD44vRA wild type) cDNA bound FGF-2 to an equal extent via their associated heparan sulfate chains. However, Namalwa cells, immobilizing FGF-2 via their cell surface CD44vRA, bound substantially more soluble FGF receptor-1 (FGFR-1) than did Namalwa cells immobilizing the same amount of FGF-2 via their cell surface CD44v3-v10. The former cells stimulated the proliferation of BaF-32 cells, bearing FGFR-1, more efficiently than did the latter cells. Finally, isolated primary synovial fluid cells from RA patients expressing CD44vRA bound more soluble FGFR-1 to their cell surface-associated FGF-2 than did corresponding synovial cells expressing CD44v3-v10 or synovial cells from osteoarthritis patients. The binding of soluble FGFR-1 to RA synovial cells could be specifically reduced by their preincubation with Ab's against the v3 exon product of CD44. Hence, FGF-2 attached to the heparan sulfate moiety expressed by the novel CD44 variant of RA synovium cells exhibits an augmented ability to stimulate FGFR-1-mediated activities. A similar mechanism may foster the destructive inflammatory cascade not only in RA, but also in other autoimmune diseases.
    [Abstract] [Full Text] [Related] [New Search]