These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Calcium-sensing receptor stimulates PTHrP release by pathways dependent on PKC, p38 MAPK, JNK, and ERK1/2 in H-500 cells. Author: Tfelt-Hansen J, MacLeod RJ, Chattopadhyay N, Yano S, Quinn S, Ren X, Terwilliger EF, Schwarz P, Brown EM. Journal: Am J Physiol Endocrinol Metab; 2003 Aug; 285(2):E329-37. PubMed ID: 12700162. Abstract: Elevated extracellular calcium ([Ca2+]o) and other agonists potentially acting via the calcium-sensing receptor (CaR) increase parathyroid hormone-related peptide (PTHrP) release from H-500 Leydig cells. Here, we provide strong evidence for the CaR's involvement by using a dominant negative CaR that attenuates high [Ca2+]o-induced PTHrP release. This effect is likely transcriptional, because high [Ca2+]o upregulates the PTHrP transcript, an effect that is abolished by actinomycin D. Regulation of PTHrP release by the CaR involves activation of PKC as well as ERK1/2, p38 MAPK, and JNK pathways. However, we show for the first time that high [Ca2+]o-induced activation of the stress-activated protein kinase SEK1 is PKC independent, because there is an additive effect of a PKC inhibitor in combination with the JNK inhibitor on [Ca2+]o-stimulated PTHrP release. Furthermore, high [Ca2+]o, in a PKC-independent fashion, induces phosphorylation of ERK1/2, SEK1, p38 MAPK, and its downstream transcription factor ATF-2. We conclude that CaR regulation of PTHrP release in H-500 cells involves activation of PKC as well as the ERK1/2, p38 MAPK, and JNK pathways.[Abstract] [Full Text] [Related] [New Search]