These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Importance of renal mitochondria in the reduction of TEMPOL, a nitroxide radical. Author: Ueda A, Nagase S, Yokoyama H, Tada M, Noda H, Ohya H, Kamada H, Hirayama A, Koyama A. Journal: Mol Cell Biochem; 2003 Feb; 244(1-2):119-24. PubMed ID: 12701819. Abstract: Spin probing methods using an electron spin resonance (ESR) spectrometer are used extensively and bring us a lot of information about in vivo redox mechanisms. However, the in vivo reducing mechanisms of exogenous nitroxide radicals, which serve as typical spin probing reagents are not clear. To clarify this, we examined the sequential kinetics of a spin probe, 4-hydroxy 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPOL) in the in vivo organs, tissue homogenates and subcellular fractions of kidney and liver using an in vivo and X-band ESR spectrometers. As a parameter of reducing activity, we calculated the half-life of TEMPOL from the decay curve of ESR signal intensity. The half-life of TEMPOL in the whole organs and homogenates of the kidney was significantly shorter than that of the liver, this indicates that the kidney has more reducing activity against TEMPOL as compared to the liver. Subcellular fractional studies revealed that this reducing activity of the kidney mainly exists in the mitochondria. Contrarily, in addition to reduction in the mitochondria, TEMPOL in the liver was reduced by the microsome and cytosol.[Abstract] [Full Text] [Related] [New Search]