These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Fractionation of milk fat by short-path distillation. Author: Campos RJ, Litwinenko JW, Marangoni AG. Journal: J Dairy Sci; 2003 Mar; 86(3):735-45. PubMed ID: 12703608. Abstract: Fractionation of milk fat by short-path distillation changes the chemical composition and physical properties of the resulting fractions. Increases in distillation temperature from 125 to 250 degrees C increased distillate yield from 0.3 to 42.7% (wt/wt). The distillate was enriched in short- and medium-chain fatty acids and low molecular weight acylglycerols, while the retentate was enriched in long-chain saturated and unsaturated fatty acids as well as high molecular weight acylglyerols. As distillation temperature increased, dropping points of the distillate increased. Relative to native milk fat, the solid fat content (SFC) vs. temperature melting profile of the distillate was depressed and that of the retentate was augmented, which correlated with the saturated long-chain fatty acid content in the fractions. Retentate crystallization parameters obtained by fitting the Avrami model to SFC-time data, did not change as a function of distillation temperature, but varied as a function of the degree of undercooling. Changes in microstructure observed by polarized light microscopy also appeared to be solely a function of the degree of undercooling, with no observable differences between retentates obtained at the different distillation temperatures. In addition, no changes in the retentate's free energy of nucleation (deltaGc) as a function of distillation temperature were found. The compressive storage modulus of the crystallized retentate increased as a function of increasing distillation temperature.[Abstract] [Full Text] [Related] [New Search]