These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Enhanced iodide transport after transfer of the human sodium iodide symporter gene is associated with lack of retention and low absorbed dose. Author: Haberkorn U, Kinscherf R, Kissel M, Kübler W, Mahmut M, Sieger S, Eisenhut M, Peschke P, Altmann A. Journal: Gene Ther; 2003 May; 10(9):774-80. PubMed ID: 12704416. Abstract: Transfer of the sodium iodide symporter (hNIS) has been proposed as a new principle of cancer gene therapy. Using clinically relevant doses of (131)I for the treatment of NIS-expressing prostate carcinoma cells, we investigated the kinetics and the absorbed doses obtained in these tumors. hNIS-expressing cell lines accumulated up to 200 times more iodide when compared to wild-type cells. However, a rapid efflux of the radioactivity (80%) occurred during the first 20 min after replacement of the medium. In rats, the hNIS-expressing tumors accumulated up to 20 times more iodide when compared to contralateral transplanted wild-type tumors. After 24 h and doses of 550, 1200 or 2400 MBq/m(2) hNIS-expressing tumors lost 89, 89 and 91% of the initial activity, respectively. Dosimetric calculations showed that 1200 MBq/m(2) resulted in 3+/-0.5 Gy (wild-type tumor 0.15+/-0.1 Gy) and 2400 MBq/m(2) resulted in 3.1+/-0.9 Gy (wild-type tumor 0.26+/-0.02 Gy). Although transduction of the hNIS gene induces iodide transport in rat prostate adenocarcinoma a rapid efflux occurs, which leads to a low absorbed dose in genetically modified tumors. With regard to a therapeutic application additional conditions need to be defined leading to iodide trapping.[Abstract] [Full Text] [Related] [New Search]