These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A point mutation in ribosomal protein L7/L12 reduces its ability to form a compact dimer structure and to assemble into the GTPase center. Author: Nomura T, Mochizuki R, Dabbs ER, Shimizu Y, Ueda T, Hachimori A, Uchiumi T. Journal: Biochemistry; 2003 Apr 29; 42(16):4691-8. PubMed ID: 12705832. Abstract: An Escherichia coli mutant, LL103, harboring a mutation (Ser15 to Phe) in ribosomal protein L7/L12 was isolated among revertants of a streptomycin-dependent strain. In the crystal structure of the L7/L12 dimer, residue 15 within the N-terminal domain contacts the C-terminal domain of the partner monomer. We tested effects of the mutation on molecular assembly by biochemical approaches. Gel electrophoretic analysis showed that the Phe15-L7/L12 variant had reduced ability in binding to L10, an effect enhanced in the presence of 0.05% of nonionic detergent. Mobility of Phe15-L7/L12 on gel containing the detergent was very low compared to the wild-type proteins, presumably because of an extended structural state of the mutant L7/L12. Ribosomes isolated from LL103 cells contained a reduced amount of L7/L12 and showed low levels (15-30% of wild-type ribosomes) of activities dependent on elongation factors and in translation of natural mRNA. The ribosomal activity was completely recovered by addition of an excess amount of Phe15-L7/L12 to the ribosomes, suggesting that the mutant L7/L12 exerts normal functions when bound on the ribosome. The interaction of Ser15 with the C-terminal domain of the partner molecule seems to contribute to formation of the compact dimer structure and its efficient assembly into the ribosomal GTPase center. We propose a model relating compact and elongated forms of L7/L12 dimers. Phe15-L7/L12 provides a new tool for studying the functional structure of the homodimer.[Abstract] [Full Text] [Related] [New Search]