These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Molecular basis of calmodulin binding to cardiac muscle Ca(2+) release channel (ryanodine receptor).
    Author: Yamaguchi N, Xu L, Pasek DA, Evans KE, Meissner G.
    Journal: J Biol Chem; 2003 Jun 27; 278(26):23480-6. PubMed ID: 12707260.
    Abstract:
    Calmodulin (CaM) is a ubiquitous Ca2+-binding protein that regulates the ryanodine receptors (RyRs) by direct binding. CaM inhibits the skeletal muscle ryanodine receptor (RyR1) and cardiac muscle receptor (RyR2) at >1 microm Ca2+ but activates RyR1 and inhibits RyR2 at <1 microm Ca2+. Here we tested whether CaM regulates RyR2 by binding to a highly conserved site identified previously in RyR1. Deletion of RyR2 amino acid residues 3583-3603 resulted in background [35S]CaM binding levels. In single channel measurements, deletion of the putative CaM binding site eliminated CaM inhibition of RyR2 at Ca2+ concentrations below and above 1 microm. Five RyR2 single or double mutants in the CaM binding region (W3587A, L3591D, F3603A, W3587A/L3591D, L3591D/F3603A) eliminated or greatly reduced [35S]CaM binding and inhibition of single channel activities by CaM depending on the Ca2+ concentration. An RyR2 mutant, which assessed the effects of 4 amino acid residues that differ between RyR1 and RyR2 in or flanking the CaM binding domain, bound [35S]CaM and was inhibited by CaM, essentially identical to wild type (WT)-RyR2. Three RyR1 mutants (W3620A, L3624D, F3636A) showed responses to CaM that differed from corresponding mutations in RyR2. The results indicate that CaM regulates RyR1 and RyR2 by binding to a single, highly conserved CaM binding site and that other RyR type-specific sites are likely responsible for the differential functional regulation of RyR1 and RyR2 by CaM.
    [Abstract] [Full Text] [Related] [New Search]