These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Angiogenic protein Cyr61 is expressed by podocytes in anti-Thy-1 glomerulonephritis. Author: Sawai K, Mori K, Mukoyama M, Sugawara A, Suganami T, Koshikawa M, Yahata K, Makino H, Nagae T, Fujinaga Y, Yokoi H, Yoshioka T, Yoshimoto A, Tanaka I, Nakao K. Journal: J Am Soc Nephrol; 2003 May; 14(5):1154-63. PubMed ID: 12707386. Abstract: Dynamic recovery of glomerular structure occurs after severe glomerular damage in anti-Thy-1 glomerulonephritis (Thy-1 GN), but its mechanism remains to be investigated. To identify candidate genes possibly involved in glomerular reconstruction, screening was performed for genes that are specifically expressed by podocytes and are upregulated in glomeruli of Thy-1 GN. Among them, cysteine-rich protein 61 (Cyr61 or CCN1), a soluble angiogenic protein belonging to the CCN family, was identified. By Northern blot analysis, Cyr61 mRNA was markedly upregulated in glomeruli of Thy-1 GN from day 3 through day 7, when mesangial cell migration was most prominent. By in situ hybridization and immunohistochemistry, Cyr61 mRNA and protein were expressed by proximal straight tubules and afferent and efferent arterioles in normal rat kidneys and were intensely upregulated at podocytes in Thy-1 GN. Platelet-derived growth factor-BB (PDGF-BB) and transforming growth factor-beta1 (TGF-beta1), of which the gene expression in the glomeruli of Thy-1 GN was upregulated in similar time course as Cyr61, induced Cyr61 mRNA expression in cultured podocytes. Furthermore, supernatant of Cyr61-overexpressing cells inhibited PDGF-induced mesangial cell migration. In conclusion, it is shown that Cyr61 is strongly upregulated at podocytes in Thy-1 GN possibly by PDGF and TGF-beta. Cyr61 may be involved in glomerular remodeling as a factor secreted from podocytes to inhibit mesangial cell migration.[Abstract] [Full Text] [Related] [New Search]