These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Thioredoxin as a molecular target of cyclopentenone prostaglandins. Author: Shibata T, Yamada T, Ishii T, Kumazawa S, Nakamura H, Masutani H, Yodoi J, Uchida K. Journal: J Biol Chem; 2003 Jul 11; 278(28):26046-54. PubMed ID: 12709421. Abstract: Prostaglandin (PG) D2, a major cyclooxygenase product in a variety of tissues and cells, readily undergoes dehydration to yield the bioactive cyclopentenone-type PGs of the J2 series, such as 15-deoxy-Delta12,14-PGJ2 (15d-PGJ2). We have shown previously that 15d-PGJ2 is a potent electrophile that causes intracellular oxidative stress and redox alteration in human neuroblastoma SH-SY5Y cells. In the present study, based on the observation that the electrophilic center of 15d-PGJ2 was involved in the pro-oxidant effect, we investigated the role of thioredoxin 1 (Trx), an endogenous redox regulator, against 15d-PGJ2-induced oxidative cell injury. It was observed that the 15d-PGJ2-induced oxidative stress was significantly suppressed by the Trx overexpression. In addition, the treatment of SH-SY5Y cells with biotinylated 15d-PGJ2 resulted in the formation of a 15d-PGJ2-Trx adduct, indicating that 15d-PGJ2 directly modified the endogenous Trx in the cells. To further examine the mechanism of the 15d-PGJ2 modification of Trx, human recombinant Trx treated with 15d-PGJ2 was analyzed by mass spectrometry. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of the 15d-PGJ2-treated human recombinant Trx demonstrated the addition of one molecule of 15d-PGJ2 per protein molecule. Moreover, the electrospray ionization-liquid chromatography/mass spectrometry/mass spectrometry analysis identified two cysteine residues, Cys-35 and Cys-69, as the targets of 15d-PGJ2. These residues may represent the direct sensors of the electrophilic PGs that induce the intracellular redox alteration and neuronal cell death.[Abstract] [Full Text] [Related] [New Search]